Memoirs of the Kakioka Magnetic Observatory

鹿屋の地電流と海洋潮汐

白木正規・田中靖章*

概 要

地磁気の変化では、太陰日変化は、太陽日変化に比べて非常に小さい。この関係は、地磁気変化 によって生じた地電流の日変化にも期待される。ところが、鹿屋(Kanoya; 31°25′, 130°54′E) で観測された地電流の太陰日変化は太陽日変化よりも大きい。この原因として、海洋潮汐が原 因で生じた地電流が考えられる。これが事実ならば、地電流の中に海洋潮汐に対応したスペク トルのピークがみられるはずである。このことから、鹿屋の地電流の NS 成分のスペクトル構 造を調べ、鹿屋の近くの検潮所の潮汐資料と比較してみた。検出されたスペクトルの大きさは、 地磁気変化によって生じたことでは説明がつかないが、海洋潮汐が原因で生じたと考えると 説明しやすい。このことから、鹿屋の地電流には、海洋潮汐が原因である変化が、太陰日変化 はかりでなく、太陽日変化にもかなり含まれているようである。

1. はじめに

地電流を起す原因にはいろいろあるが、その一つに地磁気の変化に伴うものがある。日変 化に限っていえば、地磁気日変化の大部分は太陽日変化(*S*)である。太陰日変化(*L*)も 存在するが、太陽日変化に比べてその変化は小さく、大きさは太陽日変化の 1/10 以下であ る。太陽日変化と太陰日変化のこのような関係は、地磁気の誘導で起きる地電流の日変化の 場合にも期待できる。

ところが、 庭屋 (Kanoya; 31°25'N, 130°54'E) で観測された地電流では、 太陰日変化の 方が太陽日変化よりも大きいことが知られている。 Y. Yokouchi の解析結果⁽¹⁾ によれば、 L₂/S₂ の値は、 EW 成分で1.2, NS 成分で3.5 にも及んでいる。このように大きな地電流 の太陰日変化は地磁気変化の誘導で生じたことでは説明がつかない。彼は、更に、 鹿屋の太 陰日変化の様子を調べ、地磁気の普通の変化の様子とは異なることを示し、この非常に大き な太陰日変化の大部分は海洋潮汐によるらしいと述べている。

Yokouchi の解析で得られた太陰日変化は、解析の方法からもわかるように、

 $L_n = C_n \sin \{n\tau + (n-2)\nu + \epsilon_n\}$

という式で表現されろ周波数の成分について求められたものである。この式は Chapman の phase law と呼ばれている⁽²⁾。 $L_2(n=2)$ は太陰半日周期の変化であり, 潮汐ボテンシャ $\mu^{(3)}$ の M_2 項に対応するものである。 $L_1(n=1)$ と $L_3(n=3)$ は、 L_2 項が太陽一日周期の変 調を受けた成分であり, $L_4(n=4)$ は太陽半日周期の変調を受けた変化である。

潮汐ボテンシャルには, M₂ 項以外に, O₁, N₂, 2N₂ といったようないろいろの太陰日変

142

化のスペクトル項が存在する。これらの太陰項に対応した変化は、地磁気変化の中にあるに はあるが、その大きさは非常に小さく検出は容易でない。 O₁ や № 項は長期間の資料から ようやく検出できる大きさである⁽¹⁾。一年程度の資料からは、 M2 項以外はほとんどノイズ レベルと同じ大きさであり検出ができない⁽⁵⁾。これから推測すると、地磁気の変化によって 起きた地電流の O₁ や N2 項も、変化が非常に小さく、一年程度の資料の解析からは容易 に検出できないと考えられる。

しかし, Yokouchi の解析で示されたように, 鹿屋の地電流の M₂ 項は非常に大きな振 幅をもっている。そして, 彼が推測したように, これが海洋潮汐が原因で生じたものなら, 地磁気では検出が容易でない O₁ や N₂ 項が容易に検出できるはずである。そのうえ, 検出 されたスペクトル項の大きさは, これらに対応した海洋潮汐の大きさと比例関係にあること が期待できる。この点を確かめるために, 鹿屋の地電流の半年間の資料から日変化領域の周 期構造を調べた。そして, 得られた結果と鹿屋の近くの検潮所の潮汐の資料との比較を簡単 に行った結果を述べる。

2. 解析方法と資料

周期構造を調べる方法として、ここでは、調和解析の方法を用いた。n 個の等間隔(ただし、間隔は 4t)の資料 f(i)は、

$$f(i) = \frac{a_0}{2} + \sum_{k=1}^{m} a_k \cos \frac{2\pi ki}{n} + b_k \sin \frac{2\pi ki}{n}$$

という形に展開できる。この式の ao, ak, ak は

$$a_{0} = \frac{2}{n} \sum_{i=1}^{n-1} f(i)$$

$$a_{k} = \frac{2}{n} \sum_{i=1}^{n-1} f(i) \cos \frac{2\pi ki}{n}$$

$$b_{k} = \frac{2}{n} \sum_{i=1}^{n-1} f(i) \sin \frac{2\pi ki}{n}$$

という式から計算できる。そして,それぞれの調和項の sin と cos の組は,

$$C_k \cos\left(\frac{2\pi ki}{n}-\psi_k\right)$$

という形に書かれ、この調和項の周期は

 $T_k = \frac{n\Delta t}{k}$

. *1* .

and the second second

で表わされる。この T_k という周期に対して、 C_k および ψ_k を計算すれば、これらは f(i)の振幅スペクトルと位相スペクトルである。

鹿屋の地電流の観測は1950年から始まったが、毎時値が年報として報告されているのは、 1957-60年の4年間である⁽⁰⁾。ここでは、この期間のうち、1959年10月から1960年3月

鹿屋の地電流と海洋潮汐

までの半年間の NS 成分の毎時値を解析に用いた。この期間を用いたのは、この期間にほと んど欠測がないためである。解析の方法が連続した資料を必要とするので、この期間のいく つかの欠測は前後の値から内挿した。また、この期間は地磁気観測も行なわれたので、将来、 地磁気の資料も合わせて解析して関係を調べるときに都合がよい。この期間は太陽活動がか なり活発であり、地磁気擾乱がかなりみられたので、どちらかといえばこの擾乱の影響の小 さい成分だけを解析の対象とした。

資料の時間間隔が一時間であり、期間が半年間であることから、スペクトルは周期が 183 日から2時間まで求まる。しかし、潮汐ポテンシャルのスペクトル項の存在する周期の領域 は限られているので、地電流の調和項は約6時間の周期のところまで計算した。求められた スペクトルのうち振幅スペクトルが、第2図に図示されている。

一方,地電流と海洋潮汐のスペクトル構造を比較するために、鹿屋の近くの検潮所の潮汐 の資料が用いられた。用いた検潮所は、鹿児島(Kagoshima; 31°36'N, 130°34'E)と油津 (Aburatsu; 31°35'N, 131°25'E)の2か所である。鹿屋とこれらの検潮所の位置は第1図に 示されている。鹿児島と油津の潮汐の資料は、潮汐予報のために気象庁海洋課で行なわれた 解析から得られた潮汐定数を用いた。この論文の地電流の解析を行なった期間についての潮 汐定数は求められていないが、潮汐定数は年によってそれほど違わないので、ここでは1967 年の潮汐資料から求められた定数を用いた。第3図に、2つの検潮所で潮汐項の振幅が1cm をこえるものについて、潮汐ボテンシャルの記号と共に示されている。潮汐定数は一年の資 料から求められているので、例えば一日周期の領域で K₁ と P₁ といったような接近したス ペクトルの分離ができる。しかし、比較する地電流は半年間の資料の解析なので分解能から みて K₁ と P₁ の分離はできない。このことを考えて、第3図では、半年間の資料で分離で きないものはまとめられており、振幅の大きい方の記号が示されている。

Fig. 1. Sites of Kanoya, Kagoshima and Aburatsu.

Fig. 2. Amplitude spectrum of earth current at Kanoya. The interval of analysis is half a year from October 1, 1959 to March 31, 1960. The frequency in the figure is shown by cycle per hour.

Kagoshima and Aburatsu in 1967.

3. 解析結果とその考察

第2図の地電流のスペクトルの図には、第3図に挙げられた海洋潮汐のスペクトルの位置 が記号と共に示されている。図から明らかなように、海洋潮汐のスペクトルに対応して、地 電流のスペクトルにピークがみられる。しかし、これらのピークに対応した周期の変化が地 磁気の変化にもみられる⁽⁶⁾。 K₁ と S₂ という周期の変化は、 太陽一日周期および半日周期 の変化であり、 地磁気日変化では太陰項に比べて非常に大きい。また、 地磁気日変化には 1/3 日周期の変化も含まれている。この周期に対応したピークは、第2図(c) にはっきりみ られる。これらの周期の変化は、地磁気日変化によって生じた変化の意味で、S₁*, S₂*, S₃* という記号で位置が示されている。地磁気日変化の大部分は太陽日変化であるが,1でも述 べたように変化は小さいが太陰日変化も含まれている。地磁気の変化から容易に検出される 太陰日変化は, M₂ 項に関係した変化である。これらの周期の位置が, Li*, L₂*, L₃* という 記号で示されている。このうち,Li* と Oi の周期は非常に近いので,半年間の資料から分 離できない。また、L₂* はちょうど M₂ に一致している。このほかに太陰日変化として、第 2 図の O₁ や N₂に対応した周期の変化が,その大きさは非常に小さく,半年程度の資料の 解析からは検出が容易ではないが,地磁気の変化に検出されている(*)。こうしてみると,地 電流にみられるビークには、地磁気変化にも対応した周期の変化がある。しかし、太陰日変 化の大きさを太陽日変化の大きさと比べてみると、地磁気変化に伴って生じたものとは考え ることができない。これらは、むしろ、海洋潮汐に原因があると考えた方が説明がつきやす ١١à

まず、 M_2 (L_2^*) という周期の変化は、1 でも述べたように、地磁気の変化の太陰項の中では最も変化が大きいが、太陽日変化と比べると非常に小さい。柿岡 (Kakioka; 36°14'N, 14°11'E)の地磁気変化では、偏角の場合に、 L_2/S_2 の値は 1/7 程度である⁽⁵⁾。そして、こ

れに対応した柿岡の地電流の成分の値は 1/5 程度である⁽⁷⁾。どちらの値も1よりかなり小さ い。鹿屋の地磁気の太陰日変化の解析はないが,地磁気変化の場合に柿岡と鹿屋のような距 離で,著しい違いがあるとは考えられない。地磁気太陽日変化の場合には,柿岡と鹿屋はほ ぼ同じ変化を示している⁽⁸⁾。 鹿屋の地磁気の L₂/S₂ の値も柿岡と同じ程度の値が期待され る。ところが、第2図の鹿屋の地電流の場合には, M₂(L₂*)という周期の変化は,太陽日変 化の S₁*, S₂*, S₃* のどれよりも大きく, L₂*/S₂* の値は1.8 である。このような大きな値 が,地磁気変化から生じたことでは説明がつかない。鹿屋の特殊な原因で起ったものと考え られる。Yokouchi も推測したように,第一に考えられるのは海洋潮汐の影響である。第2 図でみられるように, M₂ が全部のピークの中で最も大きいということは,第3図の海洋潮 汐のスペクトルの場合と同じであり,海洋潮汐との関係を示すものであろう。

第2図の L_a^* というビークは, 鹿屋の地電流がここで議論しているように海洋潮汐の影響を大きく受けているとしても,海洋潮汐にはその対応したスペクトルがないので,純粋に 地磁気の変化だけから生じたものであろう。地磁気の1年程度の資料からは, L_a^* はようや く検出できる程度であり, N_2 や2 N_2 という周期に対応した変化は検出が容易でない。とこ ろが,第2図の鹿屋の地電流では,たった半年の資料から,それもかなり擾乱が含まれてい る資料から, N_2 と N_2 という太陰項が明瞭に検出されている。そして,これらのスペクト ルの大きさは, L_a^* よりも大きいか,ほぼ同じである。このことから,これらの周期の太陰 項は地磁変化によって生じたものでは説明がつかない。

第2図の S_a^* というピークも、 L_a^* と同じように 海洋潮汐に対応するスペクトル項がな いので、地磁気変化だけに伴って生じたものであろう。 L_a^*/S_a^* の値は、1/6 程度であり、 柿岡の地磁気の L_a/S_a が 1/20 程度であるから、度屋の地磁気の太陰項と太陽項の関係が特 に異常であるとは思われない。

また、地磁気の変化では L_1^* 項はそれほど明瞭に検出できないが、 第2図の場合には非常にはっきりしたピークが L_1^* という周期のところにみられる。 L_1^* と O_1 とは周期が近いのでこの解析では分離できないことから、海洋潮汐の O_1 項が原因で生じたものと考えると、ピークのはっきりしていることが説明しやすい。海洋潮汐の O_1 項は、太陰項の中では M_2 に次いで大きい項である。

地電流と海洋潮汐のスペクトル項が対応するものについて、それぞれのスペクトルの大き さの関係は、第4図に示されている。Si* 項を除けば、地電流の大きさと海洋潮汐の大きさ は、ほぼ比例関係にある。Oi 項と №項をみると、海洋潮汐では Oi の方が大きいが、地電 流の場合は № の方が大きい。これは、地電流の Oi には地磁気変化で生じた Li* の変化 が重なっているため、両者の位相が異なれば、観測される地電流のビークは小さくなる。

このように、 鹿屋の地電流の太陰項の大きさは、海洋潮汐が原因で起きたものと考えると 説明しやすい。 逆に、 鹿屋の 地電流に海洋潮汐で生じた変化が重なっているとなると、 海 洋潮汐には、 K₁、S₂ というスペクトル項があるので、 鹿屋の地電流の 太陽日変化の一日周 期成分と半日周期成分には、海洋潮汐が原因となっている変化が含まれていることになる。 K₁、S₂ は第 3 図からわかるように M₂ の約半分の大きさなので、第 2 図の K₁(S₁*) という ピークの約半分は、海洋潮汐の K₁ により生じたものであり、S₂(S₂*) についてはそのほと

146

んどが,海洋潮汐の S₂ が原因で生じたことになる。これまで, 鹿屋の地電流の太陽日変化 を議論するとき, このような海洋潮汐の影響を考慮していないが^{(1),(9)},地磁気の変化による 分と海洋潮汐による分が同じくらいであるとなると、海洋潮汐が原因で生じた変化の分を除 かないことには, 地磁気と地電流の関係を議論することはできない。

Fig. 4. Correlations between amplitudes of earth current at Kanoya and thoes of oceanic tides (a) at Kagoshima and (b) at Aburatsu. Black and white circles indicate lunar and solar components, respectively.

.

第4図から、海洋潮汐と地電流の関係は、鹿児島の潮汐定数を用いた場合には、1 cm の 潮位あたり、約 0.01 mV/km の地電流を生ずることになる。しかし、 ここで地電流のスペ クトル解析に用いた方法では、それぞれの項に近い周期のところで計算されているだけで、 定量的な議論には適当な方法でない。このためには、適当な方法(例えば、コンボルージョ ン法)を用いて、周期に対応した振幅、位相を決める必要があろう。また、海洋潮汐の資料 も同じ方法で解析するのが望ましい。ここでは議論に用いなかったが、それぞれのスペクト ル項の位相についても考慮しなければならない。また, M2 項の場合、そのほとんどが海洋 潮汐によって生じたものと思われるが, 地磁気の変化によるものを除いた方がよい。 S^{3*}, L^{3*} という項が地磁気の変化だけから生じたものであるから, 地磁気と地電流の関係を決め ることができる。さらに,地電流の EW 成分に関しても解析を行なわねばならない。今後, これらの点について解析をすすめてゆく予定である。

海洋潮汐が地電流に影響するのは、潮汐の干満によって磁場の中を電気伝導度が非常によ い海水が動くために起電力が生じ、これによって海水や陸地に電流が流れるためであると考 えられる。このような現象は、世界のいくつかの地点で観測されている⁽¹⁰⁾。しかし、第3 図でわかるように、庭児島と油津の潮汐の大きさを比べると、どのスペクトル項の大きさも 鹿児島の方が大きい。鹿屋はこれらの2地点のほぼ中間にあることから、潮位の差が地電流 を起す原因となっている可能性もある⁽¹¹⁾。第4図で、海洋潮汐では O₁ 項の方が N₂ 項より 大きいが、観測された地電流では N₂ 項の方が大きい。先には、地磁気の変化による L₁* 項 でこれが説明できると述べたが、潮位の差でみると、O₁ 項よりも N₂ 項の方が大きい。こ のことから考えると、潮位の差が鹿屋の地電流の原因となっているのかも知れない。鹿児島 と油津の潮位の差と地電流の大きさとの関係は、第5 図に示されている。鹿屋の地電流が、 うえに述べたどちらの原因で生じたものか、あるいは、これらとは別な原因で生 じたのか は、今後の解析で明らかになるであろう。

Fig. 5. Correlation between amplitudes of earth current at Kanoya and amplitude differences of the two tidal stations. Black and white circles indicate lunar and solar components, respectively.

終りにあたって,この研究に際して終始ご指導いただいた地磁気観測所長柳原一夫博士と 技術課長河村諸博士に心からお礼を申し上げる。また,この研究に用いた潮汐資料の調査に 関してご便宜をはかっていただいた気象庁海洋課 河野幸男・岡田正実の両氏に心から謝意 を表したい。

17

参 考 文 献

- (1) Yokouchi, Y., Mem. Kakioka Mag. Obs., 9, No. 1, p. 7-20, 1959.
- (2) Chapman, S. and J. Bartels, Geomagnetism, Vol. I, p. 247, 1940.
- (3) Doodson, A.T., Proc. Roy. Soc. London, A, 100, p. 305-329 1922.
 Bartels J., Encyclopedia of Physics (Handbuch der Physik), Vol. XLVIII, p. 734-774, 1957.
- (4) Winch, D.E., J. Geomag. Geoelec., 22, p. 319-328, 1970.
- (5) 白木正規,地磁気観測所要報に投稿予定
- (6) 柿岡地磁気観測所報告, No. 37, 1966 及び No. 49, 1967.
- (7) 横内幸雄, 地磁気観測所要報, 2, No[.] 2/3, p. 65-68, 1939.
- (8) Shiraki, M., Mem. Kakioka Mag. Obs., 15, No. 1, p. 19-30, 1972.
- (9) 柳原一夫, 地磁気観測所要報, No. 2, p. 143-152. 1956,
- 白木正規・柳原一夫, 地磁気観測所要報, 14, No. 2, p. 143-152, 1956.
- (10) Chapman, S. and J. Bartels, Geomagnetism, Vol. I, p. 445-448, 1940. Brown, G.M. and W.G. Woods, J. Atmosph. Terrest. Phys., 33, p. 289-293, 1971.
- (11) T. Yoshimatsu, Mem. Kakioka Mag. Obs., Supple. 1, p. 1-76, 1957.

Earth Current at Kanoya and Oceanic Tide

Masanori SHIRAKI and Yasuaki TANAKA*

Abstract

Geomagnetic lunar daily variation is very small compared with the solar one. This relation is expected also for the daily variation of earth current induced by the geomagnetic variation. However, the observed lunar variation of earth current at Kanoya $(31^{\circ}25'N, 130^{\circ}54'E)$ is larger than the solar one. This fact may be explained by earth current due to oceanic tide. In this case spectral peaks in the earth current at Kanoya may be found corresponding to those in tidal spectrum. With this presupposition the spectral stracture of NS component of earth current at Kanoya was calculated and compared with the tidal constants at Kageshima $(31^{\circ}36'N, 130^{\circ}34'E)$ and Aburatsu $(31^{\circ}35'N, 131^{\circ}25'E)$. Magnitudes of detected peaks in earth current spectrum cannot be explainable by the usual electromagnetic induction effect of the geomagnetic variation as it is supposed, but it may be explained by the tidal origin. The effect of oceanic tide on the earth current at Kanoya is fairly large for the solar daily variation as well as the lunar one.

* Century Research Center Co., Ltd.